
Economic Assessment

T.I.M.E. Dividend (TIME) -
PulseChain
CertiK Assessed on Jul 12th, 2023

Executive Summary

Vulnerability Summary

0 Critical
Critical risks are those that impact the safe functioning of a platform and must be addressed before launch. Users should not

invest in any project with outstanding critical risks.

0 Major
Major risks can include centralization issues and logical errors. Under specific circumstances, these major risks can lead to loss

of funds and/or control of the project.

0 Medium Medium risks may not pose a direct risk to users’ funds, but they can affect the overall functioning of a platform.

0 Minor
Minor risks can be any of the above, but on a smaller scale. They generally do not compromise the overall integrity of the project,

but they may be less efficient than other solutions.

0 Informational
Informational errors are often recommendations to improve the style of the code or certain operations to fall within industry best

practices. They usually do not affect the overall functioning of the code.

SUMMARY T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

CertiK Assessed on Jul 12th, 2023

T.I.M.E. Dividend (TIME) - PulseChain

The economic assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Pulsechain (PLS)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 07/12/2023

KEY COMPONENTS

TIMEDividend

CODEBASE
https://scan.pulsechain.com/address/0xCA35638A3fdDD02fEC597D8c

1681198C06b23F58

View All in Codebase Page

0
Total Findings

0
Resolved

0
Mitigated

0
Partially Resolved

0
Acknowledged

0
Declined

https://scan.pulsechain.com/address/0xCA35638A3fdDD02fEC597D8c1681198C06b23F58

TABLE OF CONTENTS T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Introduction

Protocol Description

State Variables

Functions

receive()

_beforeTokenTransfer()

divideFrom()

accumulativeDividendOf()

claimableDividendOf()

claimDividend()

distributeAll()

Protocol Analysis

Claimable Dividend

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

CODEBASE T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Repository

https://scan.pulsechain.com/address/0xCA35638A3fdDD02fEC597D8c1681198C06b23F58

CODEBASE T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

https://scan.pulsechain.com/address/0xCA35638A3fdDD02fEC597D8c1681198C06b23F58

AUDIT SCOPE T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

1 file audited 1 file without findings

ID Repo File SHA256 Checksum

TIM
CertiKProject/certik-

audit-projects
TIMEDividend.sol

bb0400ff9b904a7de218ab0039e6eb169d1d

18e72d485eecc8b7dda25b07f52a

AUDIT SCOPE T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

APPROACH & METHODS T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

This report has been prepared for T.I.M.E. Dividend to discover issues and vulnerabilities in the source code of the T.I.M.E.

Dividend (TIME) - PulseChain project as well as any contract dependencies that were not part of an officially recognized

library. A comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

INTRODUCTION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

The TIMEDividend contract allows for the distribution of dividends to token holders. The dividends are paid out in native

coins (PLS), with the amount distributed based on the number of tokens held by each address after delta correction. The

delta correction moves opposite to the token flow of token transferring, such that in general, the dividend distribution is

aligned with the initial token holding status. Generally we do not recommend the token distribution to have more than half of

the total supply held by one user, given that the initial token distribution takes place before the contract is ready and allowed

to work.

The contract uses a unique approach to calculate dividends, where magnifiedDividendPerShare and

magnifiedDividendCorrections of each address are to ensure that the dividend payouts/claims are maintained over time.

A core value of the calculation if the state variable magnitude , which is a constant value used to convert amounts to scaling

magnitudes. It used to maintaining the resolution of payouts to be accurately calculated for very small amounts. It is

hardcoded to in the contract.

The contract contains two key mappings, cumulativeDividendClaimed and magnifiedDividendCorrections .

cumulativeDividendClaimed is used to track the cumulative amount of dividend claimed by each address, ensuring that

double payouts are not made. magnifiedDividendCorrections is used to track corrections made to the magnified dividend

per share as tokens are transferred between accounts.

The receive() function is aim to receive fees generated from the swap operations, which is not implemented in the

TIMEDividend contract. In fact the receive function does not specify which address is the source of the fees, such that it

allows any addresses to send native coin (PLS) to itself. The function requires that the minting process is complete and the

ownership has been renounced, which can also be seen as a status that the whole contract is ready to start functioning.

INTRODUCTION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

2128

PROTOCOL
DESCRIPTION

T.I.M.E. DIVIDEND (TIME) -
PULSECHAIN

State Variables

uint256 public constant magnitude = 2**128;

uint256 public magnifiedDividendPerShare;

mapping(address => int256) public magnifiedDividendCorrections;

mapping(address => uint256) public cumulativeDividendClaimed;

Functions

receive()

Let be the native coins (PLS) transfer amount, which is also known as msg.value in Solidity. For each function call, we

have

If the receive function is called for times, we have

where totalSupply cannot be increased since the require statement of the receive function checks that the contract

ownership is already renounced.

_beforeTokenTransfer()

Let's say there is a transfer transaction, where is the sender's address, is the recepient address, and is the token

transfer amount. Let magnifiedDividendCorrections be . If this function is called for times, we have

and

divideFrom()

PROTOCOL DESCRIPTION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

a ​b

magnifiedDividendP erShare + = ​ ×
totalSupply

a ​b magnitude

n

magnifiedDividendP erShare ​ =n ​ ​ ×∑
i=1
n

totalSupply
a ​bi magnitude

⟹ magnifiedDividendP erShare ​ =n 2 ∗128
​ ​∑i=1

n

totalSupply
a ​bi

u ​s u ​r a ​t

mdc n

mdc[u ​] =s ​magnifiedDividendP erShare × a ​∑i=1
n

t

mdc[u ​] =r − ​magnifiedDividendP erShare × a ​∑i=1
n

t

product = magDividendP erShare ∗ balance + correction

return ​ =1 product/magnitude

⟹ return ​ =1 (magDividendP erShare ∗ balance + correction) ÷ magnitude

accumulativeDividendOf()

Let magnifiedDividendCorrections be , and account be the input address. Also since there are two parts of the

return value, let the former value be and the latter value be .

claimableDividendOf()

Let magnifiedDividendCorrections be , account be the input address, and cumulativeDividendClaimed be ,

we have

claimDividend()

Let magnifiedDividendCorrections be , and let cumulativeDividendClaimed be .

distributeAll()

This function is removed in commit hash d6c89e5dac14b6db95f9dc67af54bd76103805fe .

Called function distributeAll() from interface IInternetMoneySwapRouter . The function sends all fees, the input

amount of native coins and/or WETH tokens, to the destination address defined in the contract behind the

IInternetMoneySwapRouter .

PROTOCOL DESCRIPTION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

return ​ =2 product mod magnitude

⟹ return ​ =2 (magDividendP erShare ∗ balance + correction) mod magnitude

mdc

return ​1 return ​2

return ​ =1 product/magnitude

⟹ return ​ =1 (magDividendP erShare ∗ balanceOf(account) + mdc[account]) ÷ magnitude

return ​ =2 product mod magnitude

⟹ return ​ =2 (magDividendP erShare ∗ balanceOf(account) + mdc[account]) mod magnitude

mdc cdc

return = (return ​ of dividendF rom) −1 cdc[account]

⟹ return = ​ −
magnitude

magDividendPerShare∗balanceOf(account)+mdc[account]
cdc[account]

mdc cdc

claimable = ​ −
magnitude

magDividendPerShare∗balanceOf(account)+mdc[account]
cdc[account] ​old

recipent balance + = claimable , where currency PLS

cdc[account] + = claimable

PROTOCOL ANALYSIS T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

The smart contract and its functions don't maintain any time-related variables, so the length of time a user holds TIME tokens

doesn't affect the final dividend amount. We thoroughly examined the state and local variables of the TIMEDividend contract

and found that it doesn't store or use any external data related to a locking time period. Therefore, the only variables that

influence a user's dividend/reward are the magnifiedDividendPerShare , the amount of TIME tokens held by the user's

address, and the magnifiedDividendCorrections () of the user's address.

Claimable Dividend

Within the four state variables, magnitude is declared to be constant .

magnifiedDividendPerShare is a variable that keeps track of the magnified dividend per share. It is calculated by dividing

the total amount of dividend received by the <total supply of tokens> , and then multiplying by magnitude ().

The magnifiedDividendCorrections mapping keeps track of the magnified dividend corrections for each account.

Magnified dividend corrections are used to adjust the claimable dividend of an account based on its transfer history.

The cumulativeDividendClaimed mapping keeps track of the cumulative dividend claimed for each account. It is used to

calculate the total claimable dividend for an account.

Here we would like to summarize a general math expression of the claimable dividend of a user. For the -th time the

function claimDividend is being called by an address, define the follow variables:

msg.sender , the function caller address:

magnifiedDividendPerShare : mdps

the previous claimed dividend summation:

the number of function calls of claimDividend before this call :

the number of function calls of receive :

the received PLS amount of the time with the total time:

the number of function calls of transfer as a sender:

the sent token amount of the time with the total time:

the number of function calls of transfer as a receiver:

the received token amount of the time with the total time:

the number of function calls of burn :

the burnt token amount of the time with the total time:

initial token balance of the user:

PROTOCOL ANALYSIS T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

mdc

2128

n

u

cdc ​n−1

n ​c

n ​nc

i ​nc n ​nc amount ​i ​nc

n ​ts

i ​ts n ​ts amount ​i ​ts

n ​tr

i ​tr n ​tr amount ​i ​tr

n ​b

i ​b n ​b amounti ​b

initBal

current token balance of the user: , at the -th call of claimDividend

From the above function description, we have

Here for the balance of at the -th call of claimDividend , the current token balance is

Similarly, we have the magnifiedDividendCorrections be

In the meanwhile, magnifiedDividendPerShare is monotonically increasing controlled by the receive function. From the

above function description of receive , we have

Also, for the previous claimed dividend summation, we have

Therefore, for , we have

Substitute the variable names and make them fit the latest definition in the analysis.

Since , we can extract , and then we have

Substitute and , we have the expression with the detailed amount summation based on the times of different

functions being called for the current receiver function caller.

Here when , the base case gives that the , and the first time claimable dividend is the sum of

quotient of each native coin (PLS) deposit divided by the total supply at that time.

PROTOCOL ANALYSIS T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

currBal n

claimable ​ =n ​ −
magnitude

magDividendPerShare ​∗balanceOf(account)+mdc[account]n ​nc cdc ​old

u n

currBal = initBal− <all sent amount> + <all received amount> − <all burnt amount>

⟹ currBal = initBal− ​amount ​ +∑i ​=1ts

n ​ts
i ​tr

​amount ​ −∑i ​=1ts

n ​tr
i ​tr

​amount ​∑i ​=1b

n ​b
i ​b

mdc = mdps ∗ (<all sent amount> − <all received amount> + <all burnt amount>)

⟹ mdc = mdps ∗ (​amount ​ −∑i ​=1ts

n ​ts
i ​tr ​amount ​ +∑i ​=1ts

n ​tr
i ​tr ​amount ​)∑i ​=1b

n ​b
i ​b

magnifiedDividendP erShare ​ =n ​nc
​ ​ ×∑i ​=1nc

n ​nc

totalSupply

amount ​i ​nc magnitude

cdc ​ =n−1 ​ claimable ​∑
i=1
n−1

i

claimable ​n

claimable ​ =n ​ −
magnitude

magDividendPerShare ​∗balanceOf(account)+mdc[account]n ​nc cdc ​old

claimable ​ =n ​ −
magnitude

mdps ​∗currBal+mdcn ​nc cdc ​n−1

mdc == mdps ∗ (<transfer amount delta>) ​

magnitude

mdps

claimable ​ =n ​ ∗
magnitude
mdps (currBal+ ​) −

mdps
mdc

​ claimable∑
i=1
n−1

i

currBal mdc

⟹ claimable ​ =n ​ ∗
magnitude

mdps (initBal− ​amount ​ +∑i ​=1ts

n ​ts
i ​tr

​amount ​ −∑i ​=1ts

n ​tr
i ​tr

​amount ​ +∑i ​=1b

n ​b
i ​b

​amount ​ −

∑

i ​=1ts

n ​ts
i ​tr

​amount ​ +∑i ​=1ts

n ​tr
i ​tr

​amount ​) −∑i ​=1b

n ​b
i ​b

​ claimable ​∑i=1
n−1

i

= ​ ∗
magnitude
mdps initBal− ​ claimable ​∑

i=1
n−1

i

= ​ −
magnitude

​ ​×magnitude∑i ​=1nc

n ​nc
totalSupply

amount ​i ​nc

​ claimable ​∑i=1
n−1

i

= ​ ​ −∑
i ​=1nc

n ​nc

totalSupply

amount ​i ​nc
​ claimable ​∑

i=1
n−1

i

i = 1 claimable ​ =1 0

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-never-return-false transfer Never Returns false

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

erc20-transfer-change-state transfer Has No Unexpected State Changes

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Property Name Title

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transferfrom-change-state transferFrom Has No Unexpected State Changes

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always allowance Always Succeeds

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-allowance-correct-value allowance Returns Correct Value

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Property Name Title

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-change-state approve Has No Unexpected State Changes

erc20-approve-never-return-false approve Never Returns false

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract TIMEDividend (projects/internet-money-time-
dividend/TIMEDividend.sol) In Commit c1c1ea4fa69611185541c2a130ff0dd9e1f90f97

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal False

erc20-transfer-correct-amount True

erc20-transfer-succeed-self False

erc20-transfer-correct-amount-self True

erc20-transfer-false True

erc20-transfer-exceed-balance True

erc20-transfer-never-return-false True

erc20-transfer-change-state False

erc20-transfer-recipient-overflow True

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal False

erc20-transferfrom-correct-amount True

erc20-transferfrom-succeed-self False

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-change-state False

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-recipient-overflow True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-change-state True

erc20-totalsupply-correct-value True

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-false True

erc20-approve-change-state True

erc20-approve-never-return-false True

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Technical description

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any of those functions. That

ignores contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled as operations on the

congruence classes arising from the bit-width of the underlying numeric type. This ensures that over- and underflow

characteristics are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to an ERC-20 token contract not being

formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property definitions

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time steps. Our analysis reasons about the contract's state upon entering and

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

upon leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply .

In the following, we list those property specifications.

Properties for ERC-20 function transfer

erc20-transfer-revert-zero

Function transfer Prevents Transfers to the Zero Address.

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

 [](started(contract.transfer(to, value), to == address(0))

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-succeed-normal

Function transfer Succeeds on Admissible Non-self Transfers.

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transfer(to, value), to != address(0)

 && to != msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[to] + value <= type(uint256).max && _balances[to] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-succeed-self

Function transfer Succeeds on Admissible Self Transfers.

All self-transfers, i.e. invocations of the form transfer(recipient, amount) where the recipient address equals the

address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transfer(to, value), to != address(0)

 && to == msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[msg.sender] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-correct-amount

Function transfer Transfers the Correct Amount in Non-self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

 [](willSucceed(contract.transfer(to, value), to != msg.sender

 && _balances[to] >= 0 && value >= 0

 && _balances[to] + value <= type(uint256).max

 && _balances[msg.sender] >= 0 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[msg.sender] == old(_balances[msg.sender]) - value

 && _balances[to] == old(_balances[to]) + value)))

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

erc20-transfer-correct-amount-self

Function transfer Transfers the Correct Amount in Self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true and where the recipient address

equals msg.sender (i.e. self-transfers) must not change the balance of address msg.sender .

Specification:

 [](willSucceed(contract.transfer(to, value), to == msg.sender

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[to] == old(_balances[to]))))

erc20-transfer-change-state

Function transfer Has No Unexpected State Changes.

All non-reverting invocations of transfer(recipient, amount) that return true must only modify the balance entries of

the msg.sender and the recipient addresses.

Specification:

 [](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to)

 ==> <>(finished(contract.transfer(to, value), return

 ==> (_totalSupply == old(_totalSupply) && _allowances == old(_allowances)

 && _balances[p1] == old(_balances[p1])))))

erc20-transfer-exceed-balance

Function transfer Fails if Requested Amount Exceeds Available Balance.

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

 [](started(contract.transfer(to, value), value > _balances[msg.sender]

 && _balances[msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-recipient-overflow

Function transfer Prevents Overflows in the Recipient's Balance.

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

Specification:

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

 [](started(contract.transfer(to, value), to != msg.sender

 && _balances[to] + value > type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max

 && _balances[msg.sender] <= type(uint256).max

 && value > 0 && value <= _balances[msg.sender])

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return) || finished(contract.transfer(to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transfer-false

If Function transfer Returns false , the Contract State Has Not Been Changed.

If the transfer function in contract contract fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return]

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transfer-never-return-false

Function transfe Never Returns false .

The transfer function must never return false to signal a failure.

Specification:

 [](!(finished(contract.transfer, !return)))

Properties for ERC-20 function transferFrom

erc20-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the from address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

erc20-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the dest address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), to == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

erc20-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest,

amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && to != address(0) && from != to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && _balances[to] + value <= type(uint256).max

 && value >= 0 && _balances[to] >= 0 && _balances[from] >= 0

 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-succeed-self

Function transferFrom Succeeds on Admissible Self Transfers.

All invocations of transferFrom(from, dest, amount) where the dest address equals the from address (i.e. self-

transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call.

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && from == to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && value >= 0 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-correct-amount

Function transferFrom Transfers the Correct Amount in Non-self Transfers.

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] + value <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]) - value

 && _balances[to] == old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

Function transferFrom Performs Self Transfers Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true and where the address in from

equals the address in dest (i.e. self-transfers) do not change the balance entry of the from address (which equals

dest).

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from == to

 && value >= 0 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

Function transferFrom Updated the Allowance Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), value >= 0

 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max && _balances[to] >= 0

 && _balances[to] <= type(uint256).max && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> ((_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender]) - value)

 || (_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender])

 && (from == msg.sender

 || old(_allowances[from][msg.sender])

 == type(uint256).max))))))

erc20-transferfrom-change-state

Function transferFrom Has No Unexpected State Changes.

All non-reverting invocations of transferFrom(from, dest, amount) that return true may only modify the following state

variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

 [](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to

 && (p2 != from || p3 != msg.sender))

 ==> <>(finished(contract.transferFrom(from, to, amount), return

 ==> (_totalSupply == old(_totalSupply) && _balances[p1] == old(_balances[p1])

 && _allowances[p2][p3] == old(_allowances[p2][p3])))))

erc20-transferfrom-fail-exceed-balance

Function transferFrom Fails if the Requested Amount Exceeds the Available Balance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _balances[from]

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom, !return)))

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

erc20-transferfrom-fail-exceed-allowance

Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _allowances[from]

[msg.sender]

 && _allowances[from][msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), return

 && (msg.sender == from

 || _allowances[from][msg.sender] == type(uint256).max))))

erc20-transferfrom-fail-recipient-overflow

Function transferFrom Prevents Overflows in the Recipient's Balance.

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from != to

 && _balances[to] + value > type(uint256).max && value <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transferfrom-false

If Function transferFrom Returns false , the Contract's State Has Not Been Changed.

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

erc20-transferfrom-never-return-false

Function transferFrom Never Returns false .

The transferFrom function must never return false .

Specification:

 [](!(finished(contract.transferFrom, !return)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

Function totalSupply Always Succeeds.

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

Function totalSupply Returns the Value of the Corresponding State Variable.

The totalSupply function must return the value that is held in the corresponding state variable of contract contract.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, return == _totalSupply)))

erc20-totalsupply-change-state

Function totalSupply Does Not Change the Contract's State.

The totalSupply function in contract contract must not change any state variables.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances))))

Properties related to function balanceOf

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

erc20-balanceof-succeed-always

Function balanceOf Always Succeeds.

Function balanceOf must always succeed if it does not run out of gas.

Specification:

 [](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

Function balanceOf Returns the Correct Value.

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), return == _balances[owner])))

erc20-balanceof-change-state

Function balanceOf Does Not Change the Contract's State.

Function balanceOf must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), _totalSupply == old(_totalSupply)

 && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function allowance

erc20-allowance-succeed-always

Function allowance Always Succeeds.

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Function allowance Returns Correct Value.

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 return == _allowances[owner][spender])))

erc20-allowance-change-state

Function allowance Does Not Change the Contract's State.

Function allowance must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function approve

erc20-approve-revert-zero

Function approve Prevents Giving Approvals For the Zero Address.

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

 [](started(contract.approve(spender, value), spender == address(0))

 ==> <>(reverted(contract.approve)

 || finished(contract.approve(spender, value), !return)))

erc20-approve-succeed-normal

Function approve Succeeds for Admissible Inputs.

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

Specification:

 [](started(contract.approve(spender, value), spender != address(0))

 ==> <>(finished(contract.approve(spender, value), return)))

erc20-approve-correct-amount

Function approve Updates the Approval Mapping Correctly.

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && value >= 0 && value <= type(uint256).max)

 ==> <>(finished(contract.approve(spender, value), return

 ==> _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

Function approve Has No Unexpected State Changes.

All calls of the form approve(spender, amount) must only update the allowance mapping according to the address

msg.sender and the values of spender and amount and incur no other state changes.

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && (p1 != msg.sender || p2 != spender))

 ==> <>(finished(contract.approve(spender, value), return

 ==> _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances[p1][p2] == old(_allowances[p1][p2]))))

erc20-approve-false

If Function approve Returns false , the Contract's State Has Not Been Changed.

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

 [](willSucceed(contract.approve(spender, value))

 ==> <>(finished(contract.approve(spender, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

erc20-approve-never-return-false

Function approve Never Returns false .

The function approve must never returns false .

Specification:

 [](!(finished(contract.approve, !return)))

APPENDIX T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER T.I.M.E. DIVIDEND (TIME) - PULSECHAIN

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

T.I.M.E. Dividend (TIME) - PulseChain Economic Assessment CertiK Assessed on Jul 12th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

