
Security Assessment

T.I.M.E. Dividend (TIME) -
Polygon
CertiK Assessed on Dec 7th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

0 Minor

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

0 Informational

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY T.I.M.E. DIVIDEND (TIME) - POLYGON

CertiK Assessed on Dec 7th, 2023

T.I.M.E. Dividend (TIME) - Polygon

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Polygon (MATIC)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 12/07/2023

KEY COMPONENTS

N/A

CODEBASE
https://polygonscan.com/token/0x9F42bcA1A579fCf9Efc165a0244B129

37e18C6A5

View All in Codebase Page

1
Total Findings

0
Resolved

1
Mitigated

0
Partially Resolved

0
Acknowledged

0
Declined

https://polygonscan.com/token/0x9F42bcA1A579fCf9Efc165a0244B12937e18C6A5

TABLE OF CONTENTS T.I.M.E. DIVIDEND (TIME) - POLYGON

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

TIM-01 : Initial Token Distribution

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS T.I.M.E. DIVIDEND (TIME) - POLYGON

CODEBASE T.I.M.E. DIVIDEND (TIME) - POLYGON

Repository

https://polygonscan.com/token/0x9F42bcA1A579fCf9Efc165a0244B12937e18C6A5

CODEBASE T.I.M.E. DIVIDEND (TIME) - POLYGON

https://polygonscan.com/token/0x9F42bcA1A579fCf9Efc165a0244B12937e18C6A5

AUDIT SCOPE T.I.M.E. DIVIDEND (TIME) - POLYGON

1 file audited 1 file with Mitigated findings

ID Repo File SHA256 Checksum

TIM mainnet contracts/TIMEDividend.sol
610663a652d489d47d40e682cd0e794827ea

6a4617b0297c9dc688bc85090d2d

AUDIT SCOPE T.I.M.E. DIVIDEND (TIME) - POLYGON

APPROACH & METHODS T.I.M.E. DIVIDEND (TIME) - POLYGON

This report has been prepared for Internet Money to discover issues and vulnerabilities in the source code of the T.I.M.E.

Dividend (TIME) - Polygon project as well as any contract dependencies that were not part of an officially recognized library.

A comprehensive examination has been performed, utilizing Static Analysis, Formal Verification, and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS T.I.M.E. DIVIDEND (TIME) - POLYGON

FINDINGS T.I.M.E. DIVIDEND (TIME) - POLYGON

This report has been prepared to discover issues and vulnerabilities for T.I.M.E. Dividend (TIME) - Polygon . Through this

audit, we have uncovered 1 issues ranging from different severity levels. Utilizing the techniques of Static Analysis, Formal

Verification & Manual Review to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

TIM-01 Initial Token Distribution Centralization Major Mitigated

FINDINGS T.I.M.E. DIVIDEND (TIME) - POLYGON

1
Total Findings

0
Critical

1
Major

0
Medium

0
Minor

0
Informational

TIM-01 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major contracts/TIMEDividend.sol: 44~49 Mitigated

Description

All TIME tokens are sent to the contract deployer when deploying the contract. This is a centralization risk because the

deployer or the owner(s) of the EOAs can distribute tokens without obtaining the consensus of the community. Any

compromise to the deployer account or EOAs may allow a hacker to steal and sell tokens on the market, resulting in severe

damage to the project.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

Alleviation

The team has renounced the contract ownership and the breakdown of the initial token distribution is available at

Polygon: https://polygonscan.com/token/0x9F42bcA1A579fCf9Efc165a0244B12937e18C6A5#balances

TIM-01 T.I.M.E. DIVIDEND (TIME) - POLYGON

https://polygonscan.com/token/0x9F42bcA1A579fCf9Efc165a0244B12937e18C6A5#balances

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - POLYGON

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows (note that overflow properties were excluded

from the verification):

Property Name Title

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-approve-never-return-false approve Never Returns false

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-totalsupply-succeed-always totalSupply Always Succeeds

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - POLYGON

Property Name Title

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-transfer-never-return-false transfer Never Returns false

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-allowance-succeed-always allowance Always Succeeds

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-allowance-correct-value allowance Returns Correct Value

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - POLYGON

Property Name Title

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

Verification Results

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

False: The property is violated by the project.

Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

Inapplicable: The property does not apply to the project.

Detailed Results For Contract TIMEDividend (contracts/TIMEDividend.sol) In Commit
0x9f42bca1a579fcf9efc165a0244b12937e18c6a5

Verification of ERC-20 Compliance

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-correct-amount True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal False

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-exceed-balance Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-never-return-false True

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-false True

erc20-transferfrom-succeed-self False

erc20-transferfrom-correct-allowance True

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - POLYGON

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-never-return-false True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-false True

erc20-approve-revert-zero True

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-correct-value True

erc20-totalsupply-succeed-always True

erc20-totalsupply-change-state True

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-exceed-balance Inconclusive

erc20-transfer-correct-amount True

erc20-transfer-succeed-self False

erc20-transfer-never-return-false True

erc20-transfer-false True

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal False

erc20-transfer-correct-amount-self Inconclusive

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - POLYGON

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-change-state True

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-change-state True

erc20-balanceof-correct-value True

FORMAL VERIFICATION T.I.M.E. DIVIDEND (TIME) - POLYGON

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

Finding Categories

Categories Description

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) - \old(amount)

 || (allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +

amount)

 && balanceOf(\old(sender)) == \old(balanceOf(sender) - amount);

erc20-transferfrom-correct-amount-self

All non-reverting invocations of transferFrom(from, dest, amount) that return true and where the address in from

equals the address in dest (i.e. self-transfers) do not change the balance entry of the from address (which equals

dest).

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

Specification:

requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

erc20-transferfrom-fail-exceed-allowance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

requires msg.sender != sender;

requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

ensures \result;

erc20-transferfrom-revert-from-zero

All calls of the form transferFrom(from, dest, amount) where the from address is zero, must fail.

Specification:

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

ensures \old(sender) == address(0) ==> !\result;

erc20-transferfrom-revert-to-zero

All calls of the form transferFrom(from, dest, amount) where the dest address is zero, must fail.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

erc20-transferfrom-succeed-normal

All invocations of transferFrom(from, dest, amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

requires recipient != address(0) && sender != address(0) && recipient != sender;

requires amount <= balanceOf(sender);

requires amount <= allowance(sender, msg.sender);

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result;

reverts_only_when false;

erc20-transferfrom-succeed-self

All invocations of transferFrom(from, dest, amount) where the dest address equals the from address (i.e. self-

transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call.

Specification:

requires recipient != address(0) && recipient == sender;

requires amount <= balanceOf(sender);

requires amount <= allowance(sender, msg.sender);

ensures \result;

reverts_only_when false;

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

Properties related to function approve

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

requires spender != address(0);

ensures \result;

reverts_only_when false;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract TIMEDividend must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract TIMEDividend.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function transfer

erc20-transfer-correct-amount

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

requires recipient != msg.sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);

erc20-transfer-correct-amount-self

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

All non-reverting invocations of transfer(recipient, amount) that return true and where the recipient address

equals msg.sender (i.e. self-transfers) must not change the balance of address msg.sender .

Specification:

requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

If the transfer function in contract TIMEDividend fails by returning false , it must undo all state changes it incurred

before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

erc20-transfer-succeed-normal

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

requires recipient != address(0) && recipient != msg.sender;

requires amount <= balanceOf(msg.sender);

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result;

reverts_only_when false;

erc20-transfer-succeed-self

All self-transfers, i.e. invocations of the form transfer(recipient, amount) where the recipient address equals the

address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call.

Specification:

requires recipient == msg.sender;

requires amount <= balanceOf(msg.sender);

ensures \result;

reverts_only_when false;

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

ensures \result == allowance(\old(owner), \old(spender));

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function balanceOf

erc20-balanceof-change-state

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX T.I.M.E. DIVIDEND (TIME) - POLYGON

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER T.I.M.E. DIVIDEND (TIME) - POLYGON

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER T.I.M.E. DIVIDEND (TIME) - POLYGON

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

T.I.M.E. Dividend (TIME) - Polygon Security Assessment CertiK Assessed on Dec 7th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

